Synaptic sprouting increases the uptake capacities of motoneurons in amyotrophic lateral sclerosis mice.

نویسندگان

  • S Millecamps
  • D Nicolle
  • I Ceballos-Picot
  • J Mallet
  • M Barkats
چکیده

Using adenoviruses encoding reporter genes as retrograde tracers, we assessed the capacity of motoneurons to take up and retrogradely transport adenoviral particles injected into the muscles of transgenic mice expressing the G93A human superoxide dismutase mutation, a model of amyotrophic lateral sclerosis. Surprisingly, transgene expression in the motoneurons was significantly higher in symptomatic mice than in control or presymptomatic mice. Using botulinum toxin to induce nerve sprouting at neuromuscular junctions, we showed that the unexpectedly high level of motoneurons retrograde transduction results, at least in part, from newly acquired uptake properties of the sprouts. These findings demonstrate the remarkable uptake properties of amyotrophic lateral sclerosis motoneurons in response to denervation and the rationale of using intramuscular injections of adenoviruses to overexpress therapeutic proteins in motor neuron diseases.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Selective mitochondrial Ca2+ uptake deficit in disease endstage vulnerable motoneurons of the SOD1G93A mouse model of amyotrophic lateral sclerosis.

Amyotrophic lateral sclerosis is a progressive neurodegenerative disease that targets some somatic motoneuron populations, while others, e.g. those of the oculomotor system, are spared. The pathophysiological basis of this pattern of differential vulnerability, which is preserved in a transgenic mouse model of amyotrophic lateral sclerosis (SOD1(G93A)), and the mechanism of neurodegeneration in...

متن کامل

Downregulation of the potassium chloride cotransporter KCC2 in vulnerable motoneurons in the SOD1-G93A mouse model of amyotrophic lateral sclerosis.

The balance between excitatory and inhibitory synaptic inputs is critical for the physiological control of motoneurons. The maintenance of a low-intracellular chloride concentration by the potassium chloride cotransporter 2 (KCC2) is essential for the efficacy of fast synaptic inhibition of mature motoneurons in response to the activation of ionotropic γ-aminobutyric acid A and glycine receptor...

متن کامل

Molecular Mechanisms in Amyotrophic Lateral Sclerosis: The Role of Angiogenin, a Secreted RNase

Amyotrophic lateral sclerosis is a fatal neurodegenerative disease caused by the loss of motoneurons. The precise molecular and cellular basis for neuronal death is not yet well established, but the contemporary view is that it is a culmination of multiple aberrant biological processes. Among the proposed mechanisms of motoneuron degeneration, alterations in the homeostasis of RNA binding prote...

متن کامل

Amyotrophic lateral sclerosis-immunoglobulins selectively interact with neuromuscular junctions expressing P/Q-type calcium channels.

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by a gradual loss of motoneurons. The majority of ALS cases are associated with a sporadic form whose etiology is unknown. Several pieces of evidence favor autoimmunity as a potential contributor to sporadic ALS pathology. To gain understanding concerning possible antigens interacting with IgGs from sporadic ...

متن کامل

Early intrinsic hyperexcitability does not contribute to motoneuron degeneration in amyotrophic lateral sclerosis

In amyotrophic lateral sclerosis (ALS) the large motoneurons that innervate the fast-contracting muscle fibers (F-type motoneurons) are vulnerable and degenerate in adulthood. In contrast, the small motoneurons that innervate the slow-contracting fibers (S-type motoneurons) are resistant and do not degenerate. Intrinsic hyperexcitability of F-type motoneurons during early postnatal development ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 98 13  شماره 

صفحات  -

تاریخ انتشار 2001